dynamongo Documentation
Release 0.2

Musyoka Morris

Oct 06, 2018

Contents

1 Get It Now 3
2 Documentation 5
3 Requirements 7
4 Guide 9
4.1 Installation e e e e e e e e e e e 9
42 QUICKStAIt e e e e e e e e e 9
5 API Reference 17
5.1 APIReference e e e e e 17
Python Module Index 27

dynamongo Documentation, Release 0.2

Release v0.2

dynamongo is Python ORM/framework-agnostic library for DynamoDB. It is highly inspired by the PyMongo project.
This documentation attempts to explain everything you need to know to use dynamongo.

import datetime
from dynamongo import Model, Connection
from dynamongo import IntField, StringField, ListField, EmailField, DateTimeField

This only need be called once.

Alternatively, it can be set using env variables

Connection.set_config(
access_key_1id="<KEY>",
secret_access_key="<SECRET>",
table_prefix="test-"

class User (Model) :
__table_ = 'users'
__hash_key__ = 'email'

email = EmailField(required=True)

name = StringField(required=True)

year_of_birth = IntField(max_value=2018, min_value=1900)
cities_visited = ListField(StringField)

created_at = DateTimeField (default=datetime.datetime.now)

store data to DynamoDB
john = User.save_one ({
'email': 'johndoe@gmail.com',
'name': 'John Doe',
'vear_of_birth': 1990,
'cities_visited': ['Nairobi', 'New York']

})

year_of birth, cities visited & created_at are all optional

jane = User.save_one ({
'email': 'jane@gmail.com',
'name': 'Jane Doe'

})

Access attribute values
print (john.name)

Fetch data from dynamoDB
user = User.get_one(User.email == 'Jjohndoel@gmail.com")
print (user.to_dict ())

In short, dynamongo models can be used to easily:
* validate input data
* save serialized data to DynamoDB
* read and deserialize data from DynamoDB
* delete items from DynamoDB

* update data in DynamoDB

Contents 1

dynamongo Documentation, Release 0.2

2 Contents

CHAPTER 1

Get It Now

$ pip install dynamongo

dynamongo Documentation, Release 0.2

4 Chapter 1. Get It Now

CHAPTER 2

Documentation

Full documentation is available at http://dynamongo.readthedocs.io/ .

http://dynamongo.readthedocs.io/

dynamongo Documentation, Release 0.2

6 Chapter 2. Documentation

CHAPTER 3

Requirements

e Python >=3.5

dynamongo Documentation, Release 0.2

8 Chapter 3. Requirements

CHAPTER 4

Guide

4.1 Installation

dynamongo requires Python >= 3.5.

4.1.1 Installing/Upgrading from the PyPI

To install the latest stable version from the PyPI:

’$ pip install -U dynamongo

To install the latest pre-release version from the PyPI:

’$ pip install -U dynamongo —--pre

4.1.2 Install from source

If you’d rather install directly from the source (i.e. to stay on the bleeding edge), to get the latest development version
of dynamongo, run

’$ pip install -U git+https://github.com/musyoka-morris/dynamongo.git@dev

4.2 Quickstart

This guide will walk you through the basics of working with DynamoDB and dynamongo

dynamongo Documentation, Release 0.2

4.2.1 Prerequisites

Before we start, make sure that you have an AWS access key id & AWS secret access key. If you don’t have these
keys yet, you can create them from the AWS Management Console by following this documentation.

4.2.2 Connection

Before making any calls, dynamongo needs to have access to AWS dynamoDB. Additionally, it is recommended each
repository using this library should have a unique prefix for table names. AWS connection credentials and the table
name prefix can be set in either of two ways:

1. ENVIRONMENT VARIABLES This is the recommended way of setting dynamongo connection. The env
variables are

* AWS_ACCESS_KEY_1ID : Required
* AWS_SECRET_ACCESS_KEY : Required
* AWS_REGION_NAME : Optional, defaults to us—east-2
e AWS_TABLE_PREFIX : Optional, defaults to None
2. USING CONNECTION CLASS

from dynamongo import Connection

Connection.set_config(
access_key_id="'<your aws access key id>"',
secret_access_key='<your aws secret access key>"',
region="'<aws region name>"',
table_prefix='<table prefix of your choice>'

Any values set using this method override environment variables. This only need be called once, but
it must be called before any attempt to make calls to DynamoDB.

Note: The table_prefix is more of a good practice than a feature. In DynamoDB, each customer
is allocated a single database. It is highly recommended to prefix your tables with a name of the form
application-specific-name to avoid table name collisions with other projects.

4.2.3 Declaring Models

Lets start with a basic user ‘model’

import datetime
from dynamongo import Model
from dynamongo import IntField, StringField, ListField, EmailField, DateTimeField

class User (Model) :
_ _table_ = 'users'
__hash_key__ = 'email'

email = EmailField(required=True)
name = StringField(required=True)
year_of_birth = IntField(max_value=2018, min_value=1900)

(continues on next page)

10 Chapter 4. Guide

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html

dynamongo Documentation, Release 0.2

(continued from previous page)

cities_visited = ListField(StringField)
created_at = DateTimeField(default=datetime.datetime.now)

Every model must declare the following attributes:

_ _table_ : The name of the table

__hash_key__: Hash key for the table

and at least one field for the Hash key. See Mode 1 for detailed documentation on the allowed Model attributes

4.2.4 Creating the table

Unlike other NoSQL engines like MongoDB, tables must be created and managed explicitly. At the moment, dy-
namongo abstracts only the initial table creation. Other lifecycle management operations may be done directly via
Boto3.

To create the table, use create_table (). The throughput provisioned for this table is determined by the attributes
__read_units__ & __write_units__. These are optional and they default to 8.

Note: Unlike most databases, table creation may take up to 1 minute.

For more information, please see Amazon’s official documentation.

4.2.5 Saving data
Saving single item
Saving a single item can be done by calling save_one () method. item to be saved is passed as a dict or an

instance of Model.

By default, if an item that has the same primary key as the new item already exists, the new item completely replaces
the existing item.

You can override this behaviour by passing overwrite=False. In this case, if an item that has the same primary
key as the new item already exists, a ConditionalCheckFailedException exception is raised. Otherwise,
the item is saved.

Example using a dict object

john = User.save_one ({

'email': 'johndoe@gmail.com',

'name': 'John Doe',

'vear_of_birth': 1990,

'cities_visited': ['Nairobi', 'New York']

})

Example using a Mode 1 instance

user = User (
email="'johndoe@gmail.com"',
name="'John Doe',
cities_visited=[]

(continues on next page)

4.2. Quickstart 11

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SQLtoNoSQL.CreateTable.html

dynamongo Documentation, Release 0.2

(continued from previous page)

)
user.year_of_birth = 1990
user.cities_visited = ['Nairobi', 'New York']
user = User.save_one (user)

Saving multiple items

Multiple items can be saved by calling save many () method. This method takes as input a 1ist of:
e dict objects, or
e Model instances, or
» mixture of both dict objects and Mode 1 instances

This method returns an Bat chResult instance.

By default, existing items are completely replaced by new items. passing overwrite=False changes the default
behaviour, and items which could not be created since an item already exists with the same primary key, are considered
failed.

user_1list = [
first user. defined as a dict

{

'email': 'johndoe@gmail.com',

'name': 'John Doe',

'vear_of_birth': 1990,

'cities_visited': ['"Nairobi', 'New York']

by

second user. User instance

User (
email="'johndoel@gmail.com',
name="'"'John Doe',
cities_visited=[]

result = User.save_many (user_list, overwrite=False)
print (result.fail_count)

4.2.6 Deleting Data

Just as with saving data, you can delete a single item or many items at once.

Deleting a single item
Deleting a single item can be done by calling delete_one () method. If an item by the given strategy exists, it is
deleted and the deleted item is returned. Otherwise None is returned.
This method takes in st rategy as input. st rategy can be either of the following:
1. The primary key value.

If a model has a hash_key only, this is passed in as a scalar. Otherwise, if the model has both hash_key and range_key,
the value is passed as a (hash_key, range_key) tuple.

12 Chapter 4. Guide

dynamongo Documentation, Release 0.2

user = User.delete_one (' johndoelgmail.com")

2. Dict object

The dict should contain all primary key values. i.e, if the model has both hash_key and range_key, both should be
included in the dict. Otherwise only a dict with the hash_key is required.

Non primary key items in the dict are ignored.

’user = User.delete_one({'email': 'johndoe@gmail.com'})

3. Model instance

The primary fields attributes must have valid values. Item is deleted by the primary keys.

’user = User.delete_one (User (email="johndoel@gmail.com'))

4. Key condition

In its simplest form, if the model does not have a range_key, this should be an equality condition on the hash_key
field.

if the model has both hash_key and range_key, this should be two equality conditions on both key fields ANDed
together.

user = User.delete_one(User.email == 'johndoel@gmail.com")

5. Key condition + additional checks
This allows one to delete an item based on the primary key, but with an additional check.

Example #1. Suppose we want to delete a user whose primary key email=johndoe@gmail. com, but only if the
user was born on or before the year 2000

user = User.delete_one(
(User.email == 'johndoelgmail.com') & (User.year_of_birth <= 2000)

Example #2. Delete a user whose email=johndoe@gmail . com if the user has already visited Nairobi city

user = User.delete_one (
(User.email == 'johndoe@gmail.com') & User.cities_visited.contains('Nairobi')

Example #3. This can become even more complex. Delete a user whose email=johndoe@gmail.com AND the
user was born after 2000 or the user has already visited Nairobi city

user = User.delete_one (
(User.email == 'johndoe@gmail.com') &
((User.year_of_birth > 2000) | User.cities_visited.contains('Nairobi'))

In all cases, equality conditions for the primary keys must be present in the condition. All other conditional checks
must be ANDed to the primary key conditions. This rule is strictly enforced by both dynamongo and DynamoDB. For
example, the following strategy would fail:

This raises an ExpressionError. The condition is ORed instead of being ANDed
user = User.delete_one (
(User.email == 'johndoelgmail.com') | (User.year_of_birth > 2000))

4.2. Quickstart 13

dynamongo Documentation, Release 0.2

Deleting multiple items
Multiple items can be deleted by calling Model.delete_many method. This method takes in strategy as input.
strategy can be either of the following:
1. List
Each entry in this list must be a valid object that can be passed to the delete_one () method as described above.

Examples

result = User.delete_many ([
'johndoe@gmail.com’',
'emaill@gmail.com’',

{'email': 'email2@gmail.com'},

User (email="email3@gmail.com'),

User.email == 'emaild@gmail.com',

(User.email == 'emailb@gmail.com') & (User.year_of_birth <= 2000)

1

2. Condition

Here you can pass any valid condition. Suppose we have list of user emails:

emails = ['Jjohndoe@gmail.com', 'email2@abc.io', 'anotheronel@xyz.com']

Example #1. Delete those users unconditionally. It can be achieved in either of the following ways

simply passing in the list of emails
result = User.delete_many (emails)

more control. We know exactly what emails is
result = User.delete_many (User.email.in_ (emails))

Useful when using composite primary keys
result = User.delete_many (User.keys_in(emails))

Example #2. Only delete users in the list, but only if the user was born on or before the year 2000

result = User.delete_many (
(User.email.in_ (emails)) &
(User.year_of_birth > 2000)

Example #3. Delete all users who have ever visited Nairobi city

result = User.delete_many (User.cities_visited.contains('Nairobi'))

Example #4. Delete any user who was born before 1990 and has never visited Nairobi. (we do not need boring
people in our system)

result = User.delete_many (
(User.year_of_birth < 1990) «
(not User.cities_visited.contains ('Nairobi'))

14 Chapter 4. Guide

dynamongo Documentation, Release 0.2

4.2.7 Accessing data

dynamongo supports retrieval of a single item or many items at once.

Getting a single item
Getting a single item can be done by calling get_one () method. This method raises Except ion if an item by the
given strategy does not exists.
This method takes in st rategy as input. st rategy can be either of the following:
1. The primary key value.

If a model has a hash_key only, this is passed in as a scalar. Otherwise, if the model has both hash_key and range_key,
the value is passed as a (hash_key, range_key) tuple.

user = User.get_one (' johndoel@gmail.com')

2. Dict object

The dict should contain all primary key values. i.e, if the model has both hash_key and range_key, both should be
included in the dict. Otherwise only a dict with the hash_key is required.

Non primary key items in the dict are ignored.

’user = User.get_one({'email': 'johndoelgmail.com'})

3. Model instance

The primary fields attributes must have valid values. Item is selected by the primary keys.

’user = User.get_one (User (email="johndoelgmail.com'))

4. Key condition

In its simplest form, if the model does not have a range_key, this should be an equality condition on the hash_key
field.

if the model has both hash_key and range_key, this should be two equality conditions on both key fields ANDed
together.

user = User.get_one(User.email == 'johndoelgmail.com')

Getting multiple items
Multiple items can be fetched by calling get_many () method. This method takes in strategy as input.
strategy can be either of the following:
1. List
Each entry in this list must be a valid object that can be passed to the get_one () method as described above.

Examples

users = User.get_many ([
' johndoe@gmail.com',
'emaill@gmail.com',
{'email': 'email2@gmail.com'},

(continues on next page)

4.2. Quickstart 15

https://docs.python.org/3/library/exceptions.html#Exception

dynamongo Documentation, Release 0.2

(continued from previous page)

User (email='email3@gmail.com"),
User.email == 'email4@gmail.com'

1)

2. Condition

Here you can pass any valid condition. Suppose we have list of user emails:

emails = ['Jjohndoe@gmail.com', 'email2@abc.io', 'anotheronel@xyz.com']

Example #1. Finding users by their email address, can be achieved in either of the following ways

simply passing in the list of emails
users = User.get_many (emails)

more control. We know exactly what emails is
users = User.get_many (User.email.in_(emails))

Useful when using composite primary keys
users = User.get_many (User.keys_in(emails))

Example #2. Only get users in the list, but only if the user was born on or before the year 2000

users = User.get_many (
(User.email.in_(emails)) &
(User.year_of_birth > 2000)

Example #3. Get all users who have ever visited Nairobi city

users = User.get_many (User.cities_visited.contains ('Nairobi'))

Example #4. Get all user who were born before 1990 and have never visited Nairobi.

users = User.get_many (
(User.year_of_birth < 1990) «
(not User.cities_visited.contains ('Nairobi'))

16 Chapter 4. Guide

CHAPTER B

API Reference

5.1 API Reference

5.1.1 Utility Methods
dynamongo.utils.is_empty (value)
Determine if a value is empty.
A value is considered empty if it is None or empty string " "

dynamongo.utils.non_empty_ values (d)
Return a dict with empty values removed recursively

dynamongo.utils.merge_deep (destination, source)
Merge dict objects recursively

dynamongo.utils.is_subclass (value, class_)
Check if value is a sub class of class_

dynamongo.utils.key_proto (aitr)
Return associated DynamoDB attribute type

5.1.2 Connection

Connection borg

class dynamongo.connection.Connection (access_key_id=None, secret_access_key=None, re-

gion=None, table_prefix=None)

Borg that handles access to DynamoDB.

You should never make any explicit/direct bot 03 . dynamodb calls by yourself except for table maintenance

operations

Before making any calls, aws credentials must be set by either:

17

dynamongo Documentation, Release 0.2

1. calling set_config (), or
2. setting environment variables
e AWS_ACCESS_KEY_1ID
¢ AWS_SECRET_ACCESS_KEY
e AWS_REGION_NAME
e AWS_TABLE_PREFIX

classmethod from env ()
Read config from the env

client ()
Return the DynamoDB client

resource ()
Return DynamoDB Resource

get_table (name)
Return DynamoDB Table object

5.1.3 Model

class dynamongo.model .Model (**kwargs)

Base model class with which to define custom models.

Example usage:

from dynamongo import Model
from dynamongo import IntField, StringField, EmailField

class User (Model) :
__table_ = Tusers'
__hash_key__ = 'email'

fields

email = EmailField(required=True)

name = StringField(required=True)

year_of_birth = IntField(max_value=2018, min_value=1900)

Each custom model can declare the following class meta data variables:
__table__ (required)

The name of table to be associated with this model. This is usually prefixed with the table prefix as set in
Connection. i.e, in dynamodb, the table name will appear as <table_prefix><table_name>

__hash_key__ (required)

The name of the field to be used as the Hash key for the table. NOTE: A field for the hash key MUST be
declared and it must be of primitive type str | numeric

__range_key__ (optional)

The name of the field to be used as the Range key for the table. NOTE: This is Optional. However, if declared,
a corresponding field MUST be declared and it must be of primitive type str | numeric

__read_units__ (optional)

The number of read units to provision for this table (default 8)

18

Chapter 5. API Reference

dynamongo Documentation, Release 0.2

__write_units__ (optional)
The number of write units to provision for this table (default 8)

See Amazon’s developer guide for more information about provisioned throughput Capacity for Reads and
Writes

classmethod keys_in (values)
Convenient method to generate CompoundKeyCondition

This is useful when working with a model that has a composite primary key i.e, both hash_key and
range_key

Example usage:

import datetime
from dynamongo import Model
from dynamongo import EmailField, UUIDField, DateTimeField

class Contacts (Model) :

__table_ = 'user-contacts'

__hash_key__ = 'user_id'

__range_key___ = 'email'

fields

user_id = UUIDField(required=True)

email = EmailField(required=True)

created_at = DateTimeField (default=datetime.datetime.now)

select multiple contacts for different users when you have a
list of (user_id, email) tuples
keys = [('user_id_1', 'john@gmail.com'), ('user_id_2', 'doe@gmail.com')]
contacts = Contacts.get_many (
Contacts.keys_in (keys)

classmethod table_name ()
Get prefixed table name

classmethod table ()
Get a dynamoDB Table instance for this model

classmethod create_table ()
Create a table that’ll be used to store instances of cls in AWS dynamoDB.

This operation should be called before any table read or write operation is undertaken

classmethod get_one (strategy)
Retrieve a single item from DynamoDB according to strategy.

See Getting a single item
Returns Instance of c1s - The fetched item

classmethod get_many (strategy, descending=False, limit=None)
Retrieve a multiple items from DynamoDB according to strategy.

Performs either a BatchGet, Query, or Scan depending on strategy

See Getting multiple items

. API Reference 19

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html

dynamongo Documentation, Release 0.2

Parameters
* strategy — See Getting multiple items

* descending (bool)— Sort order. Items are sorted by the hash key. Items with the same
hash key value are sorted by range key

e limit (int) — The maximum number of items to get (not necessarily the number of
items returned)

Returns list of cls

classmethod delete_one (strategy)
Deletes a single item in a table. You can perform a conditional delete operation that deletes the item if it
exists, or if it has an expected attribute value.

see Deleting a single item
Returns The deleted item

classmethod delete_many (strategy)
Deletes multiple items in a table.

see Deleting multiple items
Returns BatchResult

classmethod save_one (item, overwrite=True)
Creates a new item, or replaces an old item with a new item. If an item that has the same primary key
as the new item already exists in the specified table, the new item completely replaces the existing item
overwrite specifies under what circumstances should we overwrite an existing item.

If overwrite = True, an existing item with the same primary key is replaced by the new item uncon-
ditionally. This is the default behaviour.

If overwrite = False,a ConditionalCheckFailedException israised if there is an exist-
ing item with the same primary key

If overwrite is a conditional expression, an existing item with the same primary key is replaced by the
new item if and only if the condition is met. otherwise ConditionalCheckFailedException is
raised.

see Saving single item
Parameters
e item - the item to save. eitheradict or cls
* overwrite — This can be a bool or a condition. it defaults to True
Raises ConditionalCheckFailedException
Returns cls

classmethod save_many (items, overwrite=True)
Creates or replaces multiple items. If an item that has the same primary key as the new item already exists
in the specified table, the new item completely replaces the existing item overwrite specifies under
what circumstances should we overwrite an existing item.

If overwrite = True, an existing item with the same primary key is replaced by the new item uncon-
ditionally. This is the default behaviour.

If overwrite = False and there is an existing item with the same primary key, the item is added on
BatchResult.fail list

20 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

dynamongo Documentation, Release 0.2

If overwrite is a conditional expression and an existing item with the same primary key does not meet
the condition specified, then the item is added on BatchResult.fail list.

see Saving multiple items
Parameters
e items —a list of items to save. each item can be either a dict or cls
* overwrite —bool or a condition. it defaults to True
Returns BatchResult

classmethod update_from_dict (ifem)
Updates an item if and only if it exists in the db

item primary keys must be provided.
Parameters item (dict) —
Returns updated item

classmethod update_one (strategy, updates)
Update all items in the db that satisfy condition

updates are: ‘ADD’I’PUT’I’DELETE’
Parameters
* strategy - Single item selection strategy
* updates - list[Update]
Returns List of updated items

class dynamongo.model .BatchResult (fail=[], success=[])
Batch result class

5.1.4 Fields

Field classes for various types of data.

class dynamongo.fields.Field
Basic field from which other fields should extend. It applies no formatting by default, and should only be used
in cases where data does not need to be serialized or deserialized.

Supported primitive conditions are ==, !=, <, <=, >, and >=

set_name (name, parent=None)
Set name

schema names should start with a alphabetic character

in_ (value)
Creates a condition where the attribute is in the value,

Parameters value (11st)— The list of values that the attribute is in.

contains (value)
Creates a condition where the attribute contains the value.

Parameters value — The value the attribute contains.

begins_with (value)
Creates a condition where the attribute begins with the value.

5.1. API Reference 21

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

dynamongo Documentation, Release 0.2

Parameters value — The value that the attribute begins with.

exists ()
Creates a condition where the attribute exists.

not_exists ()
Creates a condition where the attribute does not exist.

between (low, high)
Creates a condition where the attribute is greater than or equal to the low value and less than or equal to
the high value.

Parameters
* low — The value that the attribute is greater than or equal to.
* high — The value that the attribute is less than or equal to.

set (value)
Set field to the given value if it does not exist otherwise update

set_if not_exists (value)
Set field to the given value if it does not exist otherwise do nothing

remove ()
Remove field

default
Get the default value

to_primitive (value, context=None)
Convert internal data to a value safe to store in DynamoDB.

to_native (value, context=None)
Convert untrusted data to a richer Python construct.

class dynamongo.fields.IntField (**kwargs)
A field that validates input as an Integer

See Schematics IntType

class dynamongo.fields.FloatField (**kwargs)
A field that validates input as a Float

See Schematics FloatType

class dynamongo.fields.BooleanField (**kwargs)
A boolean field

See Schematics BooleanType

class dynamongo.fields.StringField (regex=None, max_length=None, min_length=None,

*Ekwargs)
A Unicode string field.
See Schematics StringType
class dynamongo.fields.EmailField (regex=None, max_length=None, min_length=None,
*rewargs)

A field that validates input as an E-Mail-Address
See Schematics EmailType

class dynamongo.fields.URLField (fgdn=True, verify_exists=False, **kwargs)
A field that validates the input as a URL.

22 Chapter 5. API Reference

https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.IntType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.FloatType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.BooleanType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.StringType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.net.EmailType

dynamongo Documentation, Release 0.2

See Schematics URLType

class dynamongo.fields.UUIDField (**kwargs)
A field that stores a valid UUID value.

See Schematics UUIDType

class dynamongo.fields.IPAddressField (regex=None, max_length=None, min_length=None,

**kwargs)
A field that stores a valid IPv4 or IPv6 address.

See Schematics [PAddressType

class dynamongo.fields.DateTimeField (formats=None, serialized_format=None, parser=None,
tzd="allow’, convert_tz=False, drop_tzinfo=False,

**kwargs)
A field that holds a combined date and time value.

See Schematics DateTimeType

class dynamongo.fields.DateField (formats=None, **kwargs)
A field that stores and validates date values.

See Schematics DateType

class dynamongo.fields.TimedeltaField (precision=’seconds’, **kwargs)
A field that stores and validates timedelta value

See Schematics TimedeltaType

class dynamongo.fields.ListField (field, default=[], **kwargs)
A field for storing a list of items, all of which must conform to the type specified by the £ ield parameter.

See Schematics ListType
Note: This field cannot be set to None

append (*values)
Append one or more values at the end of the list

prepend (*values)
Prepend one or more values at the start of the list

class dynamongo.fields.DictField (**fields)
A field that stores dict values.

Accepts named parameters which must be instances of Field

primitive_type
aliasof builtins.dict

native_type
aliasof builtins.dict

set_name (name, parent=None)
Set name

schema names should start with a alphabetic character

default
Get the default value

to_native (value, context=None)
Convert untrusted data to a richer Python construct.

5.1. API Reference 23

https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.net.URLType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.UUIDType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.net.IPAddressType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.DateTimeType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.DateType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.base.TimedeltaType
https://schematics.readthedocs.io/en/latest/api/types.html#schematics.types.compound.ListType

dynamongo Documentation, Release 0.2

to_primitive (value, context=None)
Convert internal data to a value safe to store in DynamoDB.

5.1.5 Exceptions
exception dynamongo.exceptions.ValidationError (*args, **kwargs)
Exception raised when invalid data is encountered.

exception dynamongo.exceptions.ConditionalCheckFailedException
Raised when saving a Model instance would overwrite something in the database and we’ve forbidden that

exception dynamongo.exceptions.ExpressionError (msg, expression)
raised if some expression rules are violated

exception dynamongo.exceptions.SchemaError (msg=", name=None, value=None)
SchemaError exception is raised when a schema consistency check fails.

Common consistency failure includes:
e lacksof __table_ or_ _hash_key__ definitions
* lack of corresponding field definitions for the primary keys

* When an invalid field type is used in DictFieldor ListField

5.1.6 Conditional Expressions

Note: These classes should never be instantiated directly by the user

class dynamongo.conditions.OP

class dynamongo.conditions.BaseCondition
Base class for all expressions

class dynamongo.conditions.JoinCondition (left, right)
Base class for joiner expressions

class dynamongo.conditions.AndCondition (left, right)
Initialized by ANDing two expressions i.e, BaseCondition & BaseCondition

class dynamongo.conditions.OrCondition (left, right)
Initialized by ORing two expressions i.e, BaseCondition | BaseCondition

class dynamongo.conditions.PrimitiveCondition (attr, op, value=None)
Primitive expression

5.1.7 Update Expressions

Note: These classes should never be instantiated directly by the user

class dynamongo.updates.UpdateBuilder (type_, expression, values)
Update expression builder

classmethod create (updates)
Prepares update-expression & expression-attribute-values

24 Chapter 5. API Reference

dynamongo Documentation, Release 0.2

Parameters updates (list [Update] [tuple (Update)) — list of updates to be per-
formed

Returns a tuple (update-expression, expression-attribute-values)

class dynamongo.updates.Update (field, value=None)
Base abstract class for update expressions

value
validated value

static placeholder ()
Generate a unique placeholder string

class dynamongo.updates.RemoveUpdate (field)
Update to remove attributes from the db

class dynamongo.updates.SetUpdate (field, value, if not_exists=False)
Update to set an attribute to the given value

class dynamongo.updates.ListExtendUpdate (field, value, append=True)
Update to append or prepend values to a list

class dynamongo.updates.AddUpdate (field, value=None)
Update to perform an addition to a numeric value

5.1. API Reference 25

https://docs.python.org/3/library/stdtypes.html#list

dynamongo Documentation, Release 0.2

26 Chapter 5. API Reference

Python Module Index

d

dynamongo, 9

dynamongo.
dynamongo.

dynamongo
dynamongo

conditions, 24
connection, 17

.fields, 21
.model, 18
dynamongo.
dynamongo.

updates, 24
utils, 17

27

dynamongo Documentation, Release 0.2

28 Python Module Index

Index

A

AddUpdate (class in dynamongo.updates), 25
AndCondition (class in dynamongo.conditions), 24
append() (dynamongo.fields.ListField method), 23

B

BaseCondition (class in dynamongo.conditions), 24
BatchResult (class in dynamongo.model), 21
begins_with() (dynamongo.fields.Field method), 21
between() (dynamongo.fields.Field method), 22
BooleanField (class in dynamongo.fields), 22

C

client() (dynamongo.connection.Connection method), 18
ConditionalCheckFailedException, 24

Connection (class in dynamongo.connection), 17
contains() (dynamongo.fields.Field method), 21

create() (dynamongo.updates.UpdateBuilder class
method), 24

create_table() (dynamongo.model.Model class method),
19

D

DateField (class in dynamongo.fields), 23

DateTimeField (class in dynamongo.fields), 23

default (dynamongo.fields.DictField attribute), 23

default (dynamongo.fields.Field attribute), 22

delete_many() (dynamongo.model.Model class method),
20

delete_one() (dynamongo.model.Model class method), 20

DictField (class in dynamongo.fields), 23

dynamongo (module), 9, 17

dynamongo.conditions (module), 24

dynamongo.connection (module), 17

dynamongo.fields (module), 21

dynamongo.model (module), 18

dynamongo.updates (module), 24

dynamongo.utils (module), 17

E

EmailField (class in dynamongo.fields), 22
exists() (dynamongo.fields.Field method), 22
ExpressionError, 24

F

Field (class in dynamongo.fields), 21

FloatField (class in dynamongo.fields), 22

from_env() (dynamongo.connection.Connection class
method), 18

G

get_many() (dynamongo.model.Model class method), 19

get_one() (dynamongo.model.Model class method), 19

get_table() (dynamongo.connection.Connection method),
18

in_() (dynamongo.fields.Field method), 21
IntField (class in dynamongo.fields), 22
IPAddressField (class in dynamongo.fields), 23
is_empty() (in module dynamongo.utils), 17
is_subclass() (in module dynamongo.utils), 17

J

JoinCondition (class in dynamongo.conditions), 24

K

key_proto() (in module dynamongo.utils), 17
keys_in() (dynamongo.model.Model class method), 19

L

ListExtendUpdate (class in dynamongo.updates), 25
ListField (class in dynamongo.fields), 23

M

merge_deep() (in module dynamongo.utils), 17
Model (class in dynamongo.model), 18

29

dynamongo Documentation, Release 0.2

N Vv

native_type (dynamongo.fields.DictField attribute), 23 ValidationError, 24
non_empty_values() (in module dynamongo.utils), 17 value (dynamongo.updates.Update attribute), 25
not_exists() (dynamongo.fields.Field method), 22

O

OP (class in dynamongo.conditions), 24
OrCondition (class in dynamongo.conditions), 24

P

placeholder() (dynamongo.updates.Update static
method), 25

prepend() (dynamongo.fields.ListField method), 23

primitive_type (dynamongo.fields.DictField attribute), 23

PrimitiveCondition (class in dynamongo.conditions), 24

R

remove() (dynamongo.fields.Field method), 22

RemoveUpdate (class in dynamongo.updates), 25

resource() (dynamongo.connection.Connection method),
18

S

save_many() (dynamongo.model.Model class method),
20

save_one() (dynamongo.model.Model class method), 20

SchemakError, 24

set() (dynamongo.fields.Field method), 22

set_if_not_exists() (dynamongo.fields.Field method), 22

set_name() (dynamongo.fields.DictField method), 23

set_name() (dynamongo.fields.Field method), 21

SetUpdate (class in dynamongo.updates), 25

StringField (class in dynamongo.fields), 22

T

table() (dynamongo.model.Model class method), 19
table_name() (dynamongo.model.Model class method),
19
TimedeltaField (class in dynamongo.fields), 23
to_native() (dynamongo.fields.DictField method), 23
to_native() (dynamongo.fields.Field method), 22
to_primitive() (dynamongo.fields.DictField method), 23
to_primitive() (dynamongo.fields.Field method), 22

U

Update (class in dynamongo.updates), 25

update_from_dict() (dynamongo.model.Model class
method), 21

update_one() (dynamongo.model.Model class method),
21

UpdateBuilder (class in dynamongo.updates), 24

URLField (class in dynamongo.fields), 22

UUIDField (class in dynamongo.fields), 23

30 Index

	Get It Now
	Documentation
	Requirements
	Guide
	Installation
	Quickstart

	API Reference
	API Reference

	Python Module Index

